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which involve A + A interconversions with no exchange, a 
topologically equivalent mechanism is one in which when the 
bis chelate complex is viewed along the C 3  axis of the oc- 
tahedral framework the six ligating nuclei36 of the upper and 
lower triangular faces move toward each other along arcs 
somewhat parallel to the C3 axis. The transition state has an 
hexagonal planar geometry analogous to the one proposed for 
the digonal twist, noting however that the latter leads to 
retention of configuration. Continued motion of the ligators 
about the six arcs leads to the enantiomer. Such a sterically 
cro,wded transition state would make this type of mechanism 
energetically unfavorable also, making it doubtful that the 
corresponding averaging sets As’ and &“ (or Ad”’) would ever 
be operative, that is, enantiomerization without exchange of 
terminal groups in cis-M(AA)zXY and cis-M(AB)2X2 
systems. In case (2) above, averaging set As’ may be obtained 
by pseudorotation of the appropriate TBP-axial transition state, 
while Asf and A7‘ may by produced by pseudorotation of 
certain TBP-equatorial intermediates (cf. Table I11 of ref 6); 
this pathway is probably of lower energy than the digonal 
twist(s). Analogous considerations may lead to the discovery 
of similar, yet energetically more reasonable, pathways. 
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The  crystal field, one-electron perturbation model of d-d optical activity in trigonal transition metal complexes is extended 
to all orders in the first two noncubic terms of the crystal field interaction operator. As model systems we consider six-coordinate 
transition metal complexes of nearly octahedral (Oh) but exactly trigonal-dihedral ( 0 3 )  symmetry. The  crystal field potential 
a t  the metal ion is assumed to be octahedral to zeroth order in the perturbation treatment, and the nonoctahedral components 
of the complete crystal field potential a r e  treated as small perturbations. Chromophoric basis states are  constructed from 
metal 3d, 4p, and 4f orbitals. T h e  perturbation treatment of the chromophoric wave functions is carried to all orders by 
diagonalizjng the Hamiltonian matrix formed by the cubic basis states of the metal ion chromophore and the Hamiltonian 
operator H (trigonal) = H (cubic) + H (noncubic). The  eigenvectors of the diagonalized Hamiltonian a re  then used to 
calculate rotatory strengths and from the  eigenvalues trigonal splitting energies a r e  obtained. This work is an  extension 
of previous applications of the crystal field, one-electron model of d-d optical activity in which the perturbation treatment 
was carried only to first or second order in the chiral parts of the crystal field potential. 

I. Introduction 
Transition metal complexes of trigonal-dihedral (D3) 

symmetry have played a central role as model systems in both 

experimental and theoretical investigations of natural optical 
activity in coordination compounds. A variety of theoretical 
models have been proposed for relating the optical activity 
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associated with the d-d transitions in these systems to specific 
stereochemical and electronic structural features. Most of the 
proposed models are based on an independent-systems 
representation of the metal complexes. In this representation 
the central metal ion is treated as a symmetric chromophoric 
subsystem which is perturbed by the chiral Coulombic fields 
created by the ligand environment (com rised of atomic and 

models have also been applied to the d-d optical activity of 
chiral transition metal In these models, d-d 
rotatory strengths are calculated directly from wave functions 
generated for the entire metal complex. In this case the wave 
functions reflect the chirality of the complex directly and will 
lead to nonvanishing values for the rotatory strength quantities 
R , ,  = Irn(iC,lcLI1Cs).(iC,IrnliC~). The angular overlap model has 
also been used to calculate the d-d optical activity of dis- 
symmetric tris-bidentate metal complexe~.~  Although this 
approach appears to have considerable merit for representing 
the essential aspects of the optical activity problem, a detailed 
account of its applications has not yet been given. 

The simplest independent-systems model proposed for d-d 
optical activity in transition metal complexes is the so-called 
“ionic” or static coupling (SC) model. This model was first 
proposed by Moffitt’O and it is an adaptation of the crystal 
field (CF) model of d-d spectroscopic properties and the 
“one-electron’’ theory of molecular optical activity.’ 1,12 In this 
model the chromophoric d electrons are presumed to be 
localized on the metal ion and interactions between these 
chromophoric electrons and the ligand environment are 
represented by a crystal field type expansion. That is, the 
ligand environment is represented by an array of point charges 
or static charge distributions. In the spirit of the crystal field 
model and the “one-electron” (or static coupling) theory of 
molecular optical activity, the chromophore-ligand interactions 
serve to mix, scramble, or split the eigenstates of the isolated 
or unperturbed chromophoric unit (the metal ion in the present 
case). 

In the more general application of the independent-systems 
model, one must consider dynamical coupling (DC) between 
the chromophoric electrons and the ligand groups as well as 
static coupling (SC).1-3 Whereas the S C  arises from elec- 
trostatic interactions between “static” charge distributions in 
the ligand environment and the chromophoric electrons 
(treated dynamically), the DC arises from electrostatic in- 
teractions between “dynamical” charge distributions in the 
ligand environment and the chromophoric electrons. That is, 
the DC takes into account the correlated (or coupled) motions 
of the ligand-localized electrons and metal-localized electrons. 
Recent work of Mason and co-workers has demonstrated the 
importance of DC in the independent-systems treatment of 
d-d optical activity in trigonal transition metal complexes. 13,14 

In the present study we extend the crystal field, one-electron 
model (SC) of d-d optical activity in trigonal metal complexes 
to all orders in the first two noncubic terms of the crystal field 
expansion. To zeroth order the systems are assumed to have 
exactly octahedral (Oh) symmetry and the zeroth order crystal 
field terms are, therefore, the cubic ( o h )  terms. The first two 
(lowest order) noncubic terms appearing in the trigonal crystal 
field expansion are retained and treated as perturbations on 
the zeroth-order cubic eigenstates of the metal ion chro- 
mophore. The perturbation treatment of the chromophoric 
wave functions is then carried to all orders by diagonalizing 
the Hamiltonian matrix formed by the cubic basis states of 
the metal ion chromophore and the Hamiltonian operator 
H(trigona1) = H(cubic) + H(no_ncubic). The eigenvectors of 
the diagonalized Hamiltonian H(trigona1) are then used to 
calculate rotatory strengths. 

molecular fragments or subsystems).’- f Molecular orbital 
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In previous examinations of the crystal field, one-electron 
model of d-d optical activity in trigonal metal complexes 
considerable attention has been given the detailed nature of 
the chiral part of the crystal field potential and the relative 
merits of admitting d-p vs. d-f interactions into the model to 
provide an electric dipole mechanism for the’ ligand field 
fransitions of the metal ion. If the perturbation treatment is 
carried to first order in the noncubic (trigonal) parts of the 
crystal field interaction potential, then the d-d transitions can 
acquire a net rotatory strength only if the crystal field ex- 
pansion is carried to terms of degree 1 = 9. That is, the first 
term in the crystal field expansion, which is totally symmetric 
in oh and in D3 and which leads to a nonvanishing net d-d 
rotatory strength, transforms as Yi=9”. This potential term 
is of ninth order with respect to electron coordinates and it 
can mix the 3d orbitals (1 = 2) only with orbitals of very large 
angular momentum and high energy at the metal ion (2 = 7, 
9, 11). It will not promote d-p or d-f mixing. The Cartesian 
coordinate form of this potential (in a real tetragonal-co- 
ordinate basis) is given by xyz(x2 - y2)Cy2 - z2)(z2 - x2). This 
is often referred to as the octahedral sector or regional rule 
for six-coordinate metal complexes. 1,2,4 ,7915-17  

If the crystal field, one-electron treatment is carried to 
second order in perturbation theory, the d-d transitions can 
acquire net rotatory strength from second-order terms involving 
the simultaneous action of two noncubic crystal field in- 
teraction terms of relatively low order, one of which is gerade 
in oh (1 = 2) and one of which is ungerade in oh (1 = 3).’,16 
The ungerade term can promote both d-p and d-f mixing, and 
the gerade term can scramble the d orbitals. This second-order 
perturbation treatment leads to “mixed” sector rules for 
near-cubic six-coordinate complexe~.~  

Despite the rather obvious fact that the octahedral 
pseudoscalar potential which gives rise to net d-d rotatory 
strength in the first-order crystal field, one-electron treatment 
is physically unrealistic (due to its extremely sharp r-19 distance 
dependence and the necessity for introducing metal orbitals 
of 1 2 7),  a considerable number of spectra-structure cor- 
relations have been based on its resultant sector rule.” The 
leading crystal field terms responsible for net d-d rotatory 
strength in the second-order perturbation treatment are 
somewhat more realistic physically (given the validity of the 
crystal field model itself). It is rather easy to show that if the 
crystal field, one-electron model is carried to third order in 
perturbation theory, then the lowest order ungerade term 
appearing in the trigonal (03) crystal field expansion ( I  = 3) 
will lead to a nonvanishing net d-d rotatory strength. In a 
Cartesian trigonal-coordinate framework (the z axis coincident 
with the C3 axis and the x axis coincident with one of the 
dihedral C2 axes), this potential has the Cartesian form y (  3x2 
- y2) .  In a Cartesian tetragonal-coordinate framework for a 
six-coordinate near-octahedral system, this potential assumes 
the form ( x  - y ) ( y  - z ) ( z  - x).  

The purpose of the work presented here was to extend the 
“ionic” or crystal field, one-electron model to “all orders” in 
the leading noncubic terms of the trigonal crystal field in- 
teraction potential. This is essentially a variation method in 
which the basis set is restricted to 3d, 4p, and 4f metal orbitals 
and the noncubic crystal field interaction potential includes 
only the Y2O and (Y3-3 - Y33) trigonally symmetric terms. The 
“perturbed” wave functions are obtained by diagonalizing the 
trigonal Hamiltonian matrix and these wave functions are then 
used to calculate the rotatory strengths associated with 
trigonally perturbed d-d transitions. 
11. Model 

A. Basis Orbitals. We choose as our one-electron basis set 
3d, 4p, and 4f orbitals located on the central metal ion. For 
the 3d orbitals, we use the trigonal orbitals defined by Moffitt’O 
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Table I. d-d Interaction Matrix:' (Vg)dd 
h 

to t+ t-  e+ e- 
to  2 0 0 0 0 
t+ 0 -1 0 4 2 1 9  0 
t- 0 0 -1 0 - (2 1 *) 
e+ o -(21/2) o 0 0 
e- 0 0 - ( 2 9  0 0 

a In units of (5/196n) ' /2A20(Rd iRd) = (5/196n)112A20(v2)dd. 

A 

Table 11. d-p Interaction Matrix:' ( vu)dp 

G. Hilmes and F. S .  Richardson 

P+ 1 Po P-1 
t" 0 0 0  

f+3 f+2 f+l fo  f -1  f-, f-3 
t" 751'2 0 0 0 0  0 - ( 7 5 ' 4  

h 

Table IV. p-p Interaction Matrix? (VgP)pp 

P+1 Po P-1 
P+I -1 0 0 
P " 0  1 0  
- I  

pwl 0 0 -1 

a In units of (1/20n)1/2A20(Rp lk2 Rp) = (1/20n)1~2A20(r2)pp.  

and by Piper and Karipedes18 

t+ =-(1/3)'/'d+1 - i(2/3)'12d-2 

t- = (1/3)1'2d-1 + i(2/3)'I2d+Z 

to=do 

e+ =-(2/3)"2d+l + i(1/3)1'2d-2 
e-=(2/3)'/2d-l - i(1/3)'/*d+z 

where the orbitals d, are those prescribed by Condon and 
S h ~ r t l e y . ' ~  These orbitals form both trigonal (D3) and 
octahedral (Oh) bases. In the o h  point group, the orbital set 
(to, t+, t-) transforms as t2g, and the orbital set (e+, e-) 
transforms as eg. In the D3 point group, to transforms as a i  
and the orbitals e+, e-, t+, and t- transform as e. 

B. Crystal Field Potential. The noncubic part of the crystal 
field interaction potential is restricted to just the two leading 
terms of the general expansion. This interaction potential is 
expressed as 

V =  ~ A ~ O ? Y ~  + e~33r3(1/2)1/2(~;3 - Y:) 

= vg + vu (1) 

where the functions Yim are spherical harmonics normalized 
to unity and are dependent upon electron angular coordinates, 
r is the electron radial coordinate, and A2O and A33 are crystal 
field parameters dependent upon the charges and positions of 
perturber sites in the ligand environment. The gerade term, 
V,, transforms as a1 in D3 and as t2g in Oh. The ungerade 
term, Vu, transforms as a1 in D3 and as t2u in oh. The in- 
teraction potential, Vu, is the one employed by Moffitt'O and 
by Piper and Karipedes'* in their initial applications of the 
ionic model to the problem of d-d optical activity in trig- 

,. 
Table V. p-f Interaction Matrix:' (Vg)pf 

f t 3  f+Z f+ l  fo f-1 f-2 f-3 
p+l  0 0 2111 0 0 0 0 
Po 0 0 0 3 ' / 2  0 0 0 
pwl 0 0 0 0 2112 0 0 

' In units of (9/140n) ' /2A20(R, ir2Vif) = (9/140n)112A20(r2)pf. 

h 

Table VI. f-f Interaction Matrix:' (Vg)ff 

f+3 f+z f+ l  f o  f-1 f-2 f-3 

f + 3 - 5  0 0 0 0 0 0 
f + , O  0 0 0 0  0 0 
f + , O  0 3 0 0  0 0 
f ; O  0 0 4 0  0 0 
f - , O  0 0 0 3  0 0 
f - , O  0 0 0 0  0 0 
f - , O  0 0 0 0  0 -5 

a In units of (1/180n)1~2A20~R~Ir21R~~ = ( 1 / 1 8 0 n ) ' ~ 2 A 2 0 t r 2 ) f ~ .  

Table VIE. Magnetic Dipole Transition Matrix:' thi)dd 

t0 t+ t- e t  e- 
t o  0 -I+ 1- - ( 2 ' 4 1 +  2 ' k  
t, -1- -(2' ')k 0 2k i(2'/2)1+ 
t. 1, 0 2'I2k i(21/2)1- -2k 
e, -(2'/')1L 2k -i(2'/')1+ o 0 
e. 21/21t - ~ ' ( 2 l / ~ ) l -  -2k 0 0 

' In units of 2-"' (eh/2mc). 1, = (i + ij), k = k ,  1. =(i - ij), ( i , j ,  
k) = u n i t  vectors i n x , y .  z directions. 

Table VIII. d-p Electric Dipole Transition Matrix:' (jhpd 

In units of (1 / l5) ' / ' e (Rp IkiRd) = (1/15)1/2e(v)pd. 

onal-dihedral transition metal complexes. 
C. Interaction Matrix Elements. The interaction potential, 

V (eq l ) ,  induces interactions between the 3d, 4p, and 4f basis 
orbitals defined in section IIA. The resultant interaction 
matrix elements are given in Tables I ( d d ) ,  I1 (d-p), I11 (d-f), 
IV (p-p), V (p-f), and VI (f-f). 

D. Perturbed Wave Functions. The perturbed wave 
functions are obtained in our model by diagonalizing the 
Hamiltonian matrix (15 X 15) constructed from the basis 
orbitals giv:n inA sect@ IIA acd the Hamiltonian operator 
defined by H = Ho + V, where Ho is the Hamiltonian operator 
for the chromophoric electrons moving in a cubic (octahedral) 
ligand field and Vis  the interaction potenti$ defined in eq 
1. The Hamiltonian matrix is diagonal i n  Ho and has both 
diagonal and off-diagonal elements in V. The five lowest 
eigenvalues and eigenvectors of the Hamiltonian matrix yield 
the energies and wave functions of the trigonally perturbed 
"d" orbital set. 

E. Electric and Magnetic Dipole TranGtion Moments. To 
compute rotatory strengths, R, = Im($~~~~$, ) . ($ ,~m~$i) ,  it is 
necessary to have the electric and magnetic dipole transition 
integrals between the 3d, 4p, and 4f orbitals in our model. The 
wave functions I)! and qJ are expressed as linear combinations 
of these orbitals, and (+&I$,) and ($jjlml$i) reduce to 
weighted sums of ($ml~lpm), (dmlcLlf,), (dmlmld~~),  
(pmlmlpm), and (^fmlmlf,). The relevant (dm14pm), 
( dmlwlfm), and (d,lmld,) matrix elements are listed in Tables 
VII-IX. 

111. Calculations 
To carry out calculations based on the model described in 

sections I and I1 the following parameters are required: (a) 
radial integrQls ( r ) d p ,  ( r ) d f ,  ( r2 )dd ,  (r2)pp, ( r2)ff ,  ( r2 )p f ,  ( r3 )dp ,  
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Table IX. d-f Electric Dipole Transition Matrix:'" (&fd 

t0 t+ 
f+3 0 i((5/2)'/')1- 
f+? (10/3)'/'1- -i((5/3)'l2)k 
f+' -((16/3)'/')k -i((1/6)'/')1, 

f-, -1((1/6)1/2)1- (16/3)'/'k 
f-, i((5/3)'/')k (1 0/3) 'h+ 
f ,  i((5/2)'/')1+ 0 

fo -1, -1- 

a In units of (1/35)'/2e(Rf IY IRd) = (1/35)%r)fd. 

(r3)df; (b) zeroth-order energies for 3d, 4p, and 4f metal 
orbitals; (c) crystal field parameters A2O and A33. Various 
sets of radial integrals were used in our calculations but the 
results appeared to be qualitatively insensitive to the values 
chosen. The results presented here were calculated using the 
following values for the radial integrals: ( r )dp  = 1.79 au, ( r )df  
= 2.40 au, (r2)dd = 1.90 au, ( r2 )pp  = 2.73 au, ( r 2 ) f f  = 3.00 
au, ( r3 )dp  = 4.74 au, and ( r3 )d f  = 12.83 au (where au = 
atomic unit = 0.529 A). 

Various sets of zeroth-order orbital energies were employed 
in our calculations and again the results appeared to be 
qualitatively insensitive to the values chosen. For the results 
presented here we chose tt (the energy of the to, t+, and t- 
orbitals in an octahedral ligand field) = 0 and ee (the energy 
of the e+ and e- orbitals in an octahedral ligand field) = 0.10 
au (21 947 cm-l). The energy of the 4p orbitals was chosen 
to be ep = 0.25 au (54868 cm-'). The 4f orbitals were assumed 
to be degenerate to zeroth order (in the octahedral ligand field) 
and their energy was taken as t f  = 0.30 au (65842 cm-l). 

The crystal field parameters A2O and A33 were treated as 
independent variables in our calculations and we computed 
d-d rotatory strengths as functions of them. In the "ionic" 
model it is these parameters which carry the magnitude and 
"sense" of chirality or dissymmetry in the ligand environment. 
The Azo term accompanies an axially symmetric (about the 
C3 axis of the trigonal system) polar crystal field perturbation 
of the metal ion and by itself (Le., with A33 = 0) cannot 
produce optical activity since it preserves the inversion center 
of the system. The A2O term will, of course, lead to an energy 
splitting between the to and t+, t- orbitals. The A33 term 
accompanies a chiral crystal field perturbation of the metal 
ion and it can produce optical activity in the d-d transitions. 
The sign of the A33 term reflects the chiral "sense" of the 
perturbation-oppositely signed A33 terms arising from 
enantiomefic crystal field potentials. 

The values of A2O and A33 used in the present study were 
chosen to span a physically reasonable range. Again we point 
out that the crystal field, one-electron (or ionic) model is 
somewhat artificial on purely physical grounds and that the 
radial integrals, crystal field parameters, and orbital energies 
which enter into it must be chosen somewhat arbitrarily. 
However, this model does preserve the essential symmetry- 
determined aspects of the optical activity problem and its 
simplicity has made it both attractive and useful to workers 
in the field. 

Following Karipedes and Piper18 we shall label the 
"perturbed" d orbitals as TO, T+, T-, 7+, and 4- which are 
related to the unperturbed orbitals to, t+, t-, e+, and e-, 
respectively. The eigenvalues and wave functions for the (TO, 
T+, T-, q+, 7-) set are obtained by diagonalizing the Ham- 
iltonian matrix as discussed in section 11. The eigenvalues are 
labeled Eo' for TO, E*' for the degenerate set (T+, T-), and 
J 3 i V  for the degenerate set (a+, v-). The energy difference 
(Eo' - E*') is referred to as the trigonal splitting energy 6. 
In the present study we were principally interested in cal- 
culating the rotatory strengths associated with transitions from 
the (TO,  T+, T-) set of orbitals to the (q+, q-) set of orbitals. 
By symmetry, the following relationships obtain for the 

0 
0 
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Figure 1. Trigonal splitting energy, 6 (cm-'), plotted vs.A,' for 
selected fixed values of 
units. 
rotatory strengths of these transitions 

A z o  and A s 3  are expressed in atomic 

, A  

~ ( 7 ~  -+ q+) = Im(701~Iq+).(q+imIT0) = ~ ( 7 ~  -+ q-) =R,' 

R(T+ -+ q-1 = 1m(~+I~I77-).(q-ImI7+) = ~ ( 7 -  -+ q+) = R," 
R(T+ -+ q+) = I m ( ~ + ~ ~ ~ q + ) . ( q + ~ ~ ~ ~ + )  =R(T--+ q-) = R, 

Only three independent one-electron rotatory strengths are 
required then to characterize the rotatory strengths associated 
with all of the (TO,  T+, T-) - (7+, 7:) transitions. Note that 
the T* - qh transitions are a1 polarized (in D3), whereas the 
TO - qk and T* -+ vT transitions are e polarized (in 0 3 ) .  The 
general d-d rotatory strength matrix may be written as 

77+ 77- 
r0 Re' Re' 

7, R, Re" 

7- Re" Ra 

We define R(net), the net or total d-d rotatory strength, 
according to R(net) = 2R4 + 2Re" + 2Ra. We also define 
a ratio quantity, p = (Re' + RL')/Ra, which reflects how the 
total d-d rotatory strength is distributed between the e-po- 
larized and al-polarized trigonal transitions. 
IV. Results 

The computed results of primary interest are (a) trigonal 
splitting energy 6 = (Eo' - EA'), (b) rotatory strengths Ra, 
Re', and Re'', (c) net rotatory strength R(net) = 2(Ra + Re' 
+ R T ) ,  and (d) the ratio p = (Re' + Re")/Ra. These 
properties were calculated for a large number of different 
parameter sets-radial integrals, zeroth-order orbital energies, 
and crystal field interaction terms (Azo and A33). Although 
the quantitative nature of the results was found to depend upon 
all three types of input parameters, the qualitative nature of 
the results was found to be relatively insensitive to the choice 
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Figure 2. Trigonal splitting energy, 6 (cm-'), plotted vs. for 
selected fixed values of A,". A,' and 
units. 
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Figure 3. Net d-d rotatory strength, R(ne t ) ,  plotted vs.A,' for 
selected fixed values of A,". A," and A,' are expressed in atomic 
units. 

of radial integrals and orbital energies. We present here only 
representative results obtained for various sets of crystal field 
interaction parameters A2O and A33. In obtaining these results 
the radial integrals and orbital energies listed in section I11 
(Calculations) were used. 

In Figure 1 6 (calculated) is plotted as a function of A2O 
for five different values of A33. We note that within the 
approximations of our model 6 is a linear function of the polar 
crystal field distortion parameter Azo (for the fixed values of 
A33 shown in Figure 1). In Figure 2, 6 (calculated) is plotted 
as a function of A33 for various fixed values of A2O. The 
dependence of R(net) on A33 (for fixed values of Azo) is shown 
in Figure 3, and the dependence of R(net) on (for fixed 
values of A33) is shown in Figure 4. Only positive values of 
A33 were chosen in computing the results shown in Figures 
3 and 4; negative values of A33 would simply change the sign 
of R(net). The sign of R(net) is entirely determined by the 
sign of A33. 

Computed values of RJ, R,", R,, and p are displayed in 
Table X for selected sets of the crystal field parameters (A2O, 
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Figure 4. Net d-d rotatory strength, R(ne t ) ,  plotted vs.A,O for 
selected fixed values of A,'. A,' and A,' are expressed in atomic 
units. 

Table X. Computed Values of Re ' ,  Re" ,  R,, and pa  

A,,. au 

0.002 0.005 0.010 0.015 0.020 0.030 

A,' = 0.002 au 

g:" 0.70 1.76 3.46 5.04 

lp I 0.25 0.25 0.25 0.25 

A," = -0.002 au 

0.66 1.66 3.26 4.76 

Ipl 0.25 0.25 0.25 0.25 

A*"= 0.010 au 

0.80 1.98 3.88 5.62 

-0.24 -0.62 -1.20 -1.72 

R a  -1.84 -4.60 -9.02 -13.12 

f& -0.24 -0.56 -1.12 -1.62 

R, -1.76 -4.36 -8.56 -12.46 

-0.28 -0.70 -1.38 -1.98 

-2.18 -2.90 
6.46 8.76 

0.25 0.26 
-16.80 -22.76 

-2.06 -2.74 

-16.00 -21.76 
6.12 8.36 

0.25 0.26 

-2.48 -3.24 
7.18 9.62 

R, -2.06 -5.12 -10.04 -14.56 -18.56 -24.86 
Ip i 0.25 0.25 0.25 0.25 0.25 0.25 

A , " =  -0.010 au 
&:! -0.20 -0.50 -0.96 -1.40 -1.80 -2.44 

R, -1.58 -3.92 -7.70 -11.26 -14.50 -19.88 
0.60 1.48 2.90 4.26 5.50 7.60 

Ipl 0.25 0.25 0.25 0.25 0.25 0.26 

i:" 0.86 2.14 4.18 6.04 7.66 10.18 

lpl 0.25 0.25 0.25 0.25 0.25 0.25 

R":" 0.56 1.36 2.70 3.96 5.12 7.14 

ip I 0.25 0.25 0.25 0.25 0.26 0.26 

A , " =  0.015 au 
-0.32 -0.78 -1.52 -2.16 -2.70 -3.48 

R, -2.22 -5.50 -10.76 -15.56 -19.76 -26.30 

A, '=-0.015 au 
-0.18 -0.46 -0.88 -1.30 -1.66 -2.26 

R, -1.48 -3.66 -7.22 -10.56 -13.62 -18.76 

a Re ' ,  Re", and R, are expressed in lo-'' esu' cmz units. 

A33). Perhaps the most remarkable features of these data are 
the near constancy of the ratio p = (Re' + R:'))IR, and the 
observation that this ratio is always computed to be <1. The 
results given in Table I were computed using the radial in- 
tegrals and zeroth-order orbital energies listed in section I11 
and assuming 3d-4p-4f interactions. The absolute value of 
p is somewhat sensitive to the choice of radial integrals and 
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orbital energies and to whether 3d-4p, 3d-4f, or 3d-4p-4f 
basis sets are employed. However, the near invariance of p 
to (A2O, A33) parameter sets held for all of our calculations, 
and p was computed to be < 1 for all values of input parameters 
which we used. 

The data presented in Figures 1-4 and in Table X were 
obtained from calculations in which metal ion orbital basis sets 
included 3d, 4p, and 4f orbitals. We also performed cal- 
culations in which only 3d-4p and 3d-4f orbital basis sets were 
employed. The qualitatiue aspects of our computed results 
were not essentially different for these three basis sets, although 
the absolute values of R l ,  RL’, and R a  were about an order 
of magnitude larger for the 4d-4p basis set vs. the 3d-4f basis 
set (given the orbital energies and radial integral values listed 
in section 111). 
V. Discussion 

The principal purpose of this study was to extend the crystal 
field, one-electron model of d-d optical activity in trigo- 
nal-dihedral (03) metal complexes to all orders in the first two 
noncubic terms of the crystal field potential energy operator 
and to examine the d-d rotatory strengths computed from such 
a model. The crystal field, one-electron model was first applied 
to the d-d optical activity of such systems by Moffitt,*O and 
several subsequent studies1-4,15,16.18,2~22 were devoted to the 
refinement and use of the basic Moffitt treatment. Despite 
the obvious crudity of this model with respect to the physical 
representation of metal-ligand interactions, its simplicity and 
essential correctness in representing the symmetry-related 
aspects of the problem make it particularly attractive for 
developing spectra-structure relationships (such as, for 
example, sector or regional rules). 

In previous applications of the crystal field, one-electron 
model, the crystal field perturbation of the chromophoric d 
electrons of the metal ion was carried to either first or second 
order in the noncubic terms of the crystal field Hamiltonian 
operator. The first-order treatments lead to the so-called 
“octahedral sector rule” for d-d optical activity in trigonal 
six-coordinate transition metal complexes, and the second-order 
treatments lead to so-called “mixed sector rules”. Since it is 
by no means clear that the perturbation treatment should yield 
convergent results at or after a specified perturbation order, 
it seemed in order to examine the results obtained with the 
basic model when the perturbation treatment was carried to 
“all orders”. This is what was done in the present study. This 
approach does not, of course, improve upon the basic physical 
limitations of the crystal field, one-electron model (which are 
substantial), but it does permit a more complete assessment 
of the reliability and validity of the model in its application 
to d-d optical activity. 

The most troublesome results obtained in the present study 
with regard to the use of the crystal field, one-electron model 
in interpreting experimental chiroptical data are the apparent 
constancy of p with respect to A2O and A33 values (varied over 
“physically reasonable” ranges) and the finding that p is 
always < 1. These computed results are in apparent conflict 
with experimental Experimentally it has been found 
that (Re’ + R,”) is generally larger in magnitude than R a  for 
trigonal metal complexes and that the ratio (RL + Re”)/& 
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is somewhat sensitive to the detailed structural (stereo- 
chemical) features of the ligand environment. Since, in the 
crystal field model, A20  and A33 are meant to reflect these 
structural features, one might expect p = Re’ + Rd’ ) /Ra  to 
vary with Azo and A33. 

The “ionic” or crystal field, one-electron model of d-d 
optical activity has had a very strong and useful, influence on 
the interpretation of chiroptical spectra associated with 
dissymmetric transition metal complexes. Whatever the merits 
or otherwise of this very simple model, it has provided a 
convenient focus from which many aspects of the pioblem 
could be discussed and a point of departure for more refined 
theoretical treatments. However, the results obtained in the 
present study as well as those reported in several other recent 
studies strongly suggest that the ionic model has very little, 
if any, quantitative usefulness and that even purely qualitative 
deductions drawn from it should be considered with great 
circumspection (and some skepticism). The shortcomings of 
this model lie deeper than truncation of the perturbation 
treatment after first or second order and inclusion or exclusion 
of higher order terms (large values of I )  in the expansion of 
the chiral parts of the crystal field. If a one-electron, static 
coupling model is adopted, it would seem essential to includt! 
among the chromophoric basis states charge-transfer exci- 
tations involving both metal orbitals and donor atom orbitals. 
Recent studies by Mason and c o - w ~ r k e r s ~ ~ , ~ ~  indicate that, 
even when the ligands contain only saturated groups, a 
dynamical coupling model appears to provide a fully satis- 
factory description of d-d optical activity in trigonal metal 
complexes. 
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